Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Hervormde Teologiese Studies ; 79(2), 2023.
Article in English | ProQuest Central | ID: covidwho-2267043

ABSTRACT

The article provides an overview of important topics in contemporary medical ethics. Methodologically, it is a literature review. The article addresses only a limited selection of the problematic areas, which are, however, related to each other: digitisation of medicine, genome editing, personalised medicine as well as ethical problems and dilemmas of allocation in healthcare. The global COVID-19 pandemic has emerged as a focus and trigger. Reflections on human rights and justice in medicine are fundamental not only on the individual and social level but also on a global scale. The fundamental question is how society as a whole can be involved in the complex biopolitical and bioethical debate. The social and cultural consequences of life increasingly being understood as a technical product rather than a gift are serious. Contribution: The article also reflects on the specific contribution that Christian theology, and in particular the reformed heritage, can make to bioethical debates in modern society. The distinction between instrumental knowledge [ Verfügungswissen ] and orientational knowledge [ Orientierungswissen ] is helpful for its better understanding. A crucial result of this article is that medical treatment is repeatedly faced with ethical dilemmas. Moreover, medical progress not only creates new and better solutions to medical problems, it also raises new ethical questions that did not exist before. The purpose of medical ethics lies in identifying such dilemmas and developing ethical decision-making processes that help us to deal with such dilemmas to some extent.

2.
Gene and Genome Editing ; 3-4 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2287964

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems, which are representative genome editing technologies, are classified into class 1 and class 2 in terms of evolutionary biology and are further classified into several subtypes. Class 2 CRISPR systems, including type II Cas9 and type V Cas12a, are the most commonly used for genome editing in eukaryotic cells, while type I CRISPR systems within Class 1 are also becoming available. Type I CRISPR recognizes longer target sequences than CRISPR-Cas9 and can induce large deletion mutations of several kilobases. These features demonstrate its potential as a novel and unique genome editing tool that can induce genetic disruption safely and reliably. Thus, it is expected to be utilized for gene therapy and industrial applications. Recently, the DNA cleavage mechanism of type I CRISPR has also revealed details from protein-complex analyses with X-ray crystallography, cryo-electron microscopy, and high-speed atomic force microscopy. The single-strand DNA trans-cleavage activity of type I CRISPR, called collateral activity, has broadened the potential application for CRISPR diagnostics, especially in the development of point-of-care testing methods for COVID-19. In this review, we present an overview of the type I CRISPR system, its application to genome editing, and genetic diagnosis using CRISPR-Cas3.Copyright © 2022

3.
Trends Biotechnol ; 41(3): 396-409, 2023 03.
Article in English | MEDLINE | ID: covidwho-2285129

ABSTRACT

A series of spectacular scientific discoveries and technological advances in the second half of the 20th century have provided the basis for the ongoing genome editing revolution. The elucidation of structural and functional features of DNA and RNA was followed by pioneering studies on genome editing: Molecular biotechnology was born. Since then, four decades followed during which progress of scientific insights and technological methods continued at an overwhelming pace. Fundamental insights into microbial host-virus interactions led to the development of tools for genome editing using restriction enzymes or the revolutionary CRISPR-Cas technology. In this review, we provide a historical overview of milestones that led to the genome editing revolution and speculate about future trends in biotechnology.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , Biotechnology/methods , DNA/genetics
4.
Biomed J ; 46(2): 100587, 2023 04.
Article in English | MEDLINE | ID: covidwho-2283531

ABSTRACT

Since December 2019, the Coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread rapidly around the world, overburdening healthcare systems and creating significant global health concerns. Rapid detection of infected individuals via early diagnostic tests and administration of effective therapy remains vital in pandemic control, and recent advances in the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins (Cas) system may support the development of novel diagnostic and therapeutic approaches. Cas-based SARS-CoV-2 detection methods (FnCAS9 Editor Linked Uniform Detection Assay (FELUDA), DNA endonuclease-targeted CRISPR trans reporter (DETECTR), and Specific High-sensitivity Enzymatic Reporter Unlocking (SHERLOCK)) have been developed for easier handling compared to quantitative polymerase chain reaction (qPCR) assays, with good rapidity, high specificity, and reduced need for complex instrumentation. Cas-CRISPR-derived RNA (Cas-crRNA) complexes have been shown to reduce viral loads in the lungs of infected hamsters, by degrading virus genomes and limiting viral replication in host cells. Viral-host interaction screening platforms have been developed using the CRISPR-based system to identify essential cellular factors involved in pathogenesis, and CRISPR knockout (CRISPRKO) and activation screening results have revealed vital pathways in the life cycle of coronaviruses, including host cell entry receptors (ACE2, DPP4, and ANPEP), proteases involved in spike activation and membrane fusion (cathepsin L (CTSL) and transmembrane protease serine 2 (TMPRSS2)), intracellular traffic control routes for virus uncoating and budding, and membrane recruitment for viral replication. Several novel genes (SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin, subfamily A, member 4 (SMARCA4), ARIDIA, and KDM6A) have also been identified via systematic data mining analysis as pathogenic factors for severe CoV infection. This review highlights how CRISPR-based systems can be applied to investigate the viral life cycle, detect viral genomes, and develop therapies against SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Host Microbial Interactions , Pandemics , Lung , COVID-19 Testing , DNA Helicases , Nuclear Proteins , Transcription Factors
5.
Int J Biol Macromol ; 238: 124054, 2023 May 31.
Article in English | MEDLINE | ID: covidwho-2252112

ABSTRACT

Clustered regularly interspersed short pallindromic repeats (CRISPR) and CRISPR associated proteins (Cas) system (CRISPR-Cas) came into light as prokaryotic defence mechanism for adaptive immune response. CRISPR-Cas works by integrating short sequences of the target genome (spacers) into the CRISPR locus. The locus containing spacers interspersed repeats is further expressed into small guide CRISPR RNA (crRNA) which is then deployed by the Cas proteins to evade the target genome. Based on the Cas proteins CRISPR-Cas is classified according to polythetic system of classification. The characteristic of the CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new arenas due to which today CRISPR-Cas has evolved as cutting end technique in the field of genome editing. Here, we discuss about the evolution of CRISPR, its classification and various Cas systems including the designing and molecular mechanism of CRISPR-Cas. Applications of CRISPR-Cas as a genome editing tools are also highlighted in the areas such as agriculture, and anticancer therapy. Briefly discuss the role of CRISPR and its Cas systems in the diagnosis of COVID-19 and its possible preventive measures. The challenges in existing CRISP-Cas technologies and their potential solutions are also discussed briefly.


Subject(s)
COVID-19 , Gene Editing , Humans , Gene Editing/methods , CRISPR-Cas Systems/genetics , COVID-19/genetics , Genome
6.
Small Science ; 3(1), 2023.
Article in English | Web of Science | ID: covidwho-2241358

ABSTRACT

Ionizable lipids with branched tails have been used in lipid nanoparticles (LNPs)-based messenger RNA (mRNA) therapeutics like COVID-19 vaccines. However, due to the limited commercial availability of branched ingredients, a systematic analysis of how the branched tails affect LNP quality has been lacking to date. Herein, a-branched tail lipids are focused, as they can be synthesized from simple commercially available chemicals, and the length of each chain can be independently controlled. Furthermore, symmetry and total carbon number can be used to describe a-branched tails, facilitating the design of a systematic lipid library to elucidate "structure-property-function" relationships. Consequently, a lipid library is developed containing 32 different types of a-branched tails. This library is used to demonstrate that branched chains increase LNP microviscosity and headgroup ionization ability in an acidic environment, which in turn enhances the stability and in vivo efficacy of mRNA-LNPs. Of the branched lipids, CL4F 8-6 LNPs carrying Cas9 mRNA and sgRNA could achieve 54% genome editing and 77% protein reduction with a single dose of 2.5 mg kg(-1). This mechanism-based data on branched lipids is expected to provide insights into rational lipid design and effective gene therapy in the future.

7.
Chembiochem ; 24(9): e202200801, 2023 05 02.
Article in English | MEDLINE | ID: covidwho-2242957

ABSTRACT

Messenger RNA (mRNA) is being used as part of an emerging class of biotherapeutics with great promise for preventing and treating a wide range of diseases, as well as encoding programmable nucleases for genome editing. However, mRNA's low stability and immunogenicity, as well as the impermeability of the cell membrane to mRNA greatly limit mRNA's potential for therapeutic use. Lipid nanoparticles (LNPs) are currently one of the most extensively studied nanocarriers for mRNA delivery and have recently been clinically approved for developing mRNA-based vaccines to prevent COVID-19. In this review, we summarize the latest advances in designing ionizable lipids and formulating LNPs for intracellular and tissue-targeted mRNA delivery. Furthermore, we discuss the progress of intracellular mRNA delivery for spatiotemporally controlled CRISPR/Cas9 genome editing by using LNPs. Finally, we provide a perspective on the future of LNP-based mRNA delivery for CRISPR/Cas9 genome editing and the treatment of genetic disorders.


Subject(s)
COVID-19 , Nanoparticles , Humans , Gene Editing , CRISPR-Cas Systems/genetics , Gene Transfer Techniques , RNA, Messenger/genetics , COVID-19/genetics
8.
Small Science ; 2022.
Article in English | Web of Science | ID: covidwho-2122149

ABSTRACT

Ionizable lipids with branched tails have been used in lipid nanoparticles (LNPs)-based messenger RNA (mRNA) therapeutics like COVID-19 vaccines. However, due to the limited commercial availability of branched ingredients, a systematic analysis of how the branched tails affect LNP quality has been lacking to date. Herein, alpha-branched tail lipids are focused, as they can be synthesized from simple commercially available chemicals, and the length of each chain can be independently controlled. Furthermore, symmetry and total carbon number can be used to describe alpha-branched tails, facilitating the design of a systematic lipid library to elucidate "structure-property-function" relationships. Consequently, a lipid library is developed containing 32 different types of alpha-branched tails. This library is used to demonstrate that branched chains increase LNP microviscosity and headgroup ionization ability in an acidic environment, which in turn enhances the stability and in vivo efficacy of mRNA-LNPs. Of the branched lipids, CL4F 8-6 LNPs carrying Cas9 mRNA and sgRNA could achieve 54% genome editing and 77% protein reduction with a single dose of 2.5 mg kg(-1). This mechanism-based data on branched lipids is expected to provide insights into rational lipid design and effective gene therapy in the future.

9.
Curr Issues Mol Biol ; 44(10): 5013-5027, 2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2082119

ABSTRACT

Lipid nanoparticles (LNPs) are an emerging vehicle for gene delivery that accommodate both nucleic acid and protein. Based on the experience of therapeutic liposomes, current LNPs have been developed based on the chemistry of lipids and RNA and on the biology of human disease. LNPs have been used for the development of Onpattro, an siRNA drug for transthyretin-mediated amyloidosis, in 2018. The subsequent outbreak of COVID-19 required a vaccine for its suppression. LNP-based vaccine production received much attention for this and resulted in great success. In this review, the essential technology of LNP gene delivery has been described according to the chemistry for LNP production and biology for its clinical application.

10.
Biochemistry (Mosc) ; 87(8): 777-788, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1992959

ABSTRACT

The development of a method for genome editing based on CRISPR-Cas9 technology was awarded The Nobel Prize in Chemistry in 2020, less than a decade after the discovery of all principal molecular components of the system. For the first time in history a Nobel prize was awarded to two women, Emmanuelle Charpentier and Jennifer Doudna, who made key discoveries in the field of DNA manipulation with the CRISPR-Cas9 system, so-called "genetic scissors". It is difficult to overestimate the importance of the technique as it enables one not only to manipulate genomes of model organisms in scientific experiments, and modify characteristics of important crops and animals, but also has the potential of introducing revolutionary changes in medicine, especially in treatment of genetic diseases. The original biological function of CRISPR-Cas9 system is the protection of prokaryotes from mobile genetic elements, in particular viruses. Currently, CRISPR-Cas9 and related technologies have been successfully used to cure life-threatening diseases, make coronavirus detection tests, and even to modify human embryo cells with the consequent birth of babies carrying the introduced modifications. This intervention with human germplasm cells resulted in wide disapproval in the scientific community due to ethical concerns, and calls for a moratorium on inheritable genomic manipulations. This review focuses on the history of the discovery of the CRISPR-Cas9 system with some aspects of its current applications, including ethical concerns about its use in humans.


Subject(s)
Gene Editing , Viruses , Animals , CRISPR-Cas Systems , Female , Gene Editing/methods , Genomics , Humans
11.
Frontiers of Agricultural Science & Engineering ; 9(2):309-311, 2022.
Article in English | Academic Search Complete | ID: covidwho-1912285
12.
Indian Journal of Agricultural Sciences ; 91(9):1274-1279, 2021.
Article in English | Scopus | ID: covidwho-1897938

ABSTRACT

The discovery of the CRISPR/Cas microbial adaptive immune system and its ongoing development as a genome editing tool represents the work of many scientists around the world.The time line of CRISPR/Cas system shows that this technology is improving continuously to remove the demerits of preceding one with the aim of development of highly efficient, specific with low off target effect and ultimately transgene free technology in light of ethical and environmental issues related with transgenic technology.Initially, CRISPR/Cas9 was developed as method of choice as it provides targeted mutagenesis under in vivo condition and all the homeoalleles of a gene can be targeted in same plant, especially in case of polyploid species efficiently which is difficult through other existing technology.No residual or foreign gene insertion is required and modification is permanent.Now, CRISPR/Cpfl has been developed as more potent, efficient and simpler than CRISPR/Cas9.Different forms of Cas enzymes provide new avenues for regulation of genomic component.In view of the present devastating COVID-19 disaster the scientists used this novel technology for detection of virus in humans at an early stage of infection thus saving human lives.The evolution of CRlSPR'Cas technology, their advantages, apprehensions and solution, experimental design and updates of this technology is discussed in the present review. © 2021 Indian Council of Agricultural Research. All rights reserved.

13.
Int J Mol Sci ; 23(10)2022 May 12.
Article in English | MEDLINE | ID: covidwho-1875640

ABSTRACT

Viral infections can be fatal and consequently, they are a serious threat to human health. Therefore, the development of vaccines and appropriate antiviral therapeutic agents is essential. Depending on the virus, it can cause an acute or a chronic infection. The characteristics of viruses can act as inhibiting factors for the development of appropriate treatment methods. Genome editing technology, including the use of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) proteins, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), is a technology that can directly target and modify genomic sequences in almost all eukaryotic cells. The development of this technology has greatly expanded its applicability in life science research and gene therapy development. Research on the use of this technology to develop therapeutics for viral diseases is being conducted for various purposes, such as eliminating latent infections or providing resistance to new infections. In this review, we will look at the current status of the development of viral therapeutic agents using genome editing technology and discuss how this technology can be used as a new treatment approach for viral diseases.


Subject(s)
Gene Editing , Virus Diseases , Genome , Humans , Technology , Transcription Activator-Like Effector Nucleases/genetics , Virus Diseases/genetics , Virus Diseases/therapy
16.
Cell Rep ; 38(10): 110476, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1729612

ABSTRACT

Targeted delivery of therapeutic proteins toward specific cells and across cell membranes remains major challenges. Here, we develop protein-based delivery systems utilizing detoxified single-chain bacterial toxins such as diphtheria toxin (DT) and botulinum neurotoxin (BoNT)-like toxin, BoNT/X, as carriers. The system can deliver large protein cargoes including Cas13a, CasRx, Cas9, and Cre recombinase into cells in a receptor-dependent manner, although delivery of ribonucleoproteins containing guide RNAs is not successful. Delivery of Cas13a and CasRx, together with guide RNA expression, reduces mRNAs encoding GFP, SARS-CoV-2 fragments, and endogenous proteins PPIB, KRAS, and CXCR4 in multiple cell lines. Delivery of Cre recombinase modifies the reporter loci in cells. Delivery of Cas9, together with guide RNA expression, generates mutations at the targeted genomic sites in cell lines and induced pluripotent stem cell (iPSC)-derived human neurons. These findings establish modular delivery systems based on single-chain bacterial toxins for delivery of membrane-impermeable therapeutics into targeted cells.


Subject(s)
Bacterial Toxins , COVID-19 , Bacterial Toxins/genetics , CRISPR-Cas Systems , Gene Editing , Humans , RNA, Guide, Kinetoplastida/metabolism , SARS-CoV-2
17.
Viruses ; 13(11)2021 10 26.
Article in English | MEDLINE | ID: covidwho-1488755

ABSTRACT

Understanding the dynamic relationship between viral pathogens and cellular host factors is critical to furthering our knowledge of viral replication, disease mechanisms and development of anti-viral therapeutics. CRISPR genome editing technology has enhanced this understanding, by allowing identification of pro-viral and anti-viral cellular host factors for a wide range of viruses, most recently the cause of the COVID-19 pandemic, SARS-CoV-2. This review will discuss how CRISPR knockout and CRISPR activation genome-wide screening methods are a robust tool to investigate the viral life cycle and how other class 2 CRISPR systems are being repurposed for diagnostics.


Subject(s)
CRISPR-Cas Systems , Communicable Diseases, Emerging/virology , Coronavirus Infections/virology , Coronavirus/genetics , Gene Editing , Zika Virus Infection/virology , Zika Virus/genetics , COVID-19/diagnosis , COVID-19/virology , Clustered Regularly Interspaced Short Palindromic Repeats , Communicable Diseases, Emerging/diagnosis , Coronavirus/physiology , Coronavirus Infections/diagnosis , Host-Pathogen Interactions , Humans , SARS-CoV-2/genetics , Zika Virus/physiology , Zika Virus Infection/diagnosis
18.
Viruses ; 13(10)2021 10 04.
Article in English | MEDLINE | ID: covidwho-1481009

ABSTRACT

The livestock industry is constantly threatened by viral disease outbreaks, including infections with zoonotic potential. While preventive vaccination is frequently applied, disease control and eradication also depend on strict biosecurity measures. Clustered regularly interspaced palindromic repeats (CRISPR) and associated proteins (Cas) have been repurposed as genome editors to induce targeted double-strand breaks at almost any location in the genome. Thus, CRISPR/Cas genome editors can also be utilized to generate disease-resistant or resilient livestock, develop vaccines, and further understand virus-host interactions. Genes of interest in animals and viruses can be targeted to understand their functions during infection. Furthermore, transgenic animals expressing CRISPR/Cas can be generated to target the viral genome upon infection. Genetically modified livestock can thereby reduce disease outbreaks and decrease zoonotic threats.


Subject(s)
Gene Editing/methods , Livestock/virology , Viruses/genetics , Animal Husbandry/methods , Animals , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genetic Engineering , Host Microbial Interactions/genetics , Virus Diseases/prevention & control , Viruses/pathogenicity
19.
N Biotechnol ; 66: 25-35, 2022 Jan 25.
Article in English | MEDLINE | ID: covidwho-1428279

ABSTRACT

The aim of this survey is to identify and characterize new products in plant biotechnology since 2015, especially in relation to the advent of New Breeding Techniques (NBTs) such as gene editing based on the CRISPR-Cas system. Transgenic (gene transfer or gene silencing) and gene edited traits which are approved or marketed in at least one country, or which have a non-regulated status in the USA, are collected, as well as related patents worldwide. In addition, to shed light on potential innovation for Africa, field trials on the continent are examined. The compiled data are classified in application categories, including agronomic improvements, industrial use and medical use, namely production of recombinant therapeutic molecules or vaccines (including against Covid-19). The data indicate that gene editing appears to be an effective complement to 'classical' transgenesis, the use of which is not declining, rather than a replacement, a trend also observed in the patenting landscape. Nevertheless, increased use of gene editing is apparent. Compared to transgenesis, gene editing has increased the proportion of some crop species and decreased others amongst approved, non-regulated or marketed products. A similar differential trend is observed for breeding traits. Gene editing has also favored the emergence of new private companies. China, and prevalently its public sector, overwhelmingly dominates the patenting landscape, but not the approved/marketed one, which is dominated by the USA. The data point in the direction that regulatory environments will favor or discourage innovation.


Subject(s)
Gene Editing , Plant Breeding , Plants, Genetically Modified , Biotechnology , CRISPR-Cas Systems , Gene Transfer Techniques , Genome, Plant , Plants, Genetically Modified/genetics , Recombinant Proteins/biosynthesis , Vaccines/biosynthesis
20.
SELECTION OF CITATIONS
SEARCH DETAIL